平均值的标准差的计算公式:S=Sqr(∑(xn-x拨)^2/(n-1)),公式中∑代表总和,x拨代表x的算术平均值,^2代表二次方,Sqr代表平方根。
平均值的标准偏差是指一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
平均值的标准偏差的计算公式:sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/(n-1))=STDEV.S(x1,x2...xn)。
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。