全微分:数学中的一个概念
如果函数z=f(x,y)在(x,y)处的全增量
Δz=f(x+Δx,y+Δy)-f(x,y)
可以表示为
Δz=AΔx+BΔy+o(ρ),
其中A、B不依赖于Δx,Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x,y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x,y)在点(x,y)处的全微分,记为dz即
dz=AΔx+BΔy
该表达式称为函数z=f(x,y)在(x,y)处(关于Δx,Δy)的全微分。
全微分:数学中的一个概念
如果函数z=f(x,y)在(x,y)处的全增量
Δz=f(x+Δx,y+Δy)-f(x,y)
可以表示为
Δz=AΔx+BΔy+o(ρ),
其中A、B不依赖于Δx,Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x,y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x,y)在点(x,y)处的全微分,记为dz即
dz=AΔx+BΔy
该表达式称为函数z=f(x,y)在(x,y)处(关于Δx,Δy)的全微分。