正三棱锥的侧棱不垂直与底面。
因为正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。
既然三个侧面是等腰三角形,那么两个底角一定是锐角小于90度。因为三角形的内角和等于180度。
如果正三棱锥的侧棱垂直与底面,那么一个底角就是90度,因为正三棱锥侧面是等腰三角形,两个底角相等,那么另一个底角也是90度,再加上顶角,就大于180度了,这和三角形内角和等于180度是相矛盾的,所以正三棱锥的侧棱不垂直与底面。
当然不是
你可以做一个很简单的判断
以A为顶点,BCD为底面的正三棱锥三侧棱两两垂直。
那如果你把A向上或向下移动他仍然是正三棱锥,但是侧棱还两两垂直
证明:正三棱锥是指三条侧棱长相等,且顶点在底面的射影为底面正三角形中心的三棱锥,所以正三棱锥的侧面可以为任意等腰三角形。
正三棱锥中常见的两种特殊情形是正四面体和三条侧棱两两垂直的正三棱锥