阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
阶乘,也是数学里的一种术语。
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
在表达阶乘时,就使用“!”来表示。如h阶乘,就表示为h!
阶乘一般很难计算,因为积都很大。
以下列出1至10的阶乘。
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
另外,数学家定义,0!=1,所以0!=1!
计算方法
大于等于1
任何大于等于1 的自然数n 阶乘表示方法:
或
0的阶乘
0!=1。