若两个随机变量X和Y相互独立,那么两个随机变量的和的方差等于各自方差的和: D(X+Y) = D(X)+D(Y) (1)这是因为:D(X+Y) = E{(X+Y)-[E(X)+E(Y)]}^2 = E{[X-E(X)]+[Y-E(Y)]}^2 = E[X-E(X)]^2 + 2E{[X-E(X)][Y-E(Y)]} + E[Y-E(Y)]^2 = D(X) + D(Y) + 2E{[X-E(X)][Y-E(Y)]} = D(X) + D(Y)这是因为 X、Y相互独立,E{[X-E(X)][Y-E(Y)]}=0 (2)因此: D(X+Y) = D(X)+D(Y)