圆截直线的弦长公式:弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]。 其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。
弦长公式,是指直线与圆锥曲线相交所得弦长d的公式。
圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
圆截直线的弦长公式:弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]。 其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。
弦长公式,是指直线与圆锥曲线相交所得弦长d的公式。
圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。