第一阶段:启动
在这个阶段我们需要根据所在机构的现行组织架构和工作规范基础上,建立一套质量管控流程和规范。如建立质量管控委员会、制定质量管控管控办法等。质量管控委员会不必是全职,可由现有组织中如信息中心相关人员兼任。数据质量管控办法,则应明确质量管控的角色、职责,建立可执行的工作流程、可量化的工作评估方法,同时也应具备绩效考核、冲突解决与管控方式等。
有了流程和规范后,相应的责任人就应明确本轮质量管控的目标。如:数据质量提升范围,或者是满足一些业务的预期。目标制定完成后我们就可以进入下一个执行阶段了。
第二阶段:执行
进入执行阶段,我们就要开始具体的质量管控工作,整个工作应该围绕启动阶段制定的目标进行。这时我们应该适当引入一些质量管控工具来帮助我们更高效地完成我们的工作。
第二步,设计数据质量控制操作程序
获知已知数据问题后,就应设计数据质量控制操作程序。主要包括以下3个方面:
制定检查和监控的频率及方式
制定质量问题评估方式和整改方式
制定质量报告内容及对象
第三步,定义数据质量需求
根据剖析的质检规则和控制操作程序,对数据质量需求进行定义,这里又可拆分成以下3个步骤。
1.梳理数据模型
梳理数据模型的主要工作是确定检查对象实体之间的关系,关键字、主外键关系梳理、字段类型、长度等。
2.建立质量规则
这一步是将我们剖析的数据检验业务规则,转化成可执行、有结果的技术规则。
3.建立质检方案
将可同时评价且主责部门划分一致的规则集合起来,建立质检方案。也可根据业务或者是评价规范再对规则进行细分建立方案。
第四步,确定数据质量水平
数据质量需求定义完毕之后,我们就需要确定在此需求下,目前数据质量的水平处于什么位置。
第五步,管理数据质量问题
问题找到,下一步我们就应该进行问题的管理了。根据不同的质量问题,进行不同的质量整改方案。
第三阶段:检查
检查阶段,主要是对执行阶段的成果进行检查并分析原因,包括以下3个方面。
1)确定整改质量
对处理后的数据进行再次质检,出具数据质量的报告。
2)对比整改效果
对比处理前后效果,总结改进措施。
3)检查数据质量是否合格,分析不合格原因
这里找到了不合格的原因,会在下一轮管控中进行技术上或者操作程序上的改进。
第四阶段:处理
本环节一般包括以下2个方面:
1)监控数据质量,控制管理程序和绩效
根据既定的操作程序,对质量管控过程中各个环节参与者进行绩效评估。还可以根据不同时期的重点的制定不同的评分标准,有针对性地进行评价和管控,如整改初期数据缺失严重,则可对完整性规则权重调大,以期更快看到成效或者达到更好的效果。
2)建立质量控制意识与文化
在这里沟通与推广是重点,要让所有参与者了解数据质量问题和其实质影响,宣贯系统化的数据质量管控方法,同时挖掘对各个环节参与者的价值,尤其是业务方,传达一种“数据质量问题不能只靠技术手段解决”的意识。最终形成一种数据质量的管理的文化。