1. 结构模拟
1943年起步的“人工神经网络”对人脑生理结构进行模拟研究,从而诞生了第一条研究路径。这一研究路径从神经生理学和认知科学的研究成果出发,强调智能活动是由大量简单的单元通过复杂的相互连接后并行运行的结果。在人工智能发展史上称之为“联结主义”学派,其最精彩的成果是深度神经网络。

2. 功能模拟
由于人脑神经网络的异常复杂,这一研究途径进展比较艰难。于是,人们便转向了对人脑功能进行模拟研究,这就促成了基于逻辑推理的第二条研究路径的问世:1956年兴起的“物理符号系统”。这一研究途径在人工智能发展史上称为“符号主义”学派,其核心是研究如何用计算机易于处理的符号表示人脑中的知识,并模拟人的心智进行推理。符号主义的代表性成果是证明了38条数学定理的启发式程序“LT逻辑理论家”,以及各种面向特定专门领域的“专家系统”。
3. 行为模拟
后来,功能模拟路径遇到了知识界定、知识获取、知识表示、知识演绎等诸方面的困难,称为“知识瓶颈”。于是,人们又转向了对智能系统的行为进行模拟研究,这就是1990年问世的“感知-行动系统”的研究。行为模拟研究路径在人工智能发展史上称为“行为主义”学派,其最著名的成果首推布鲁克斯的六足行走机器人。

“人工智能不是万灵药。“它的工作原理实际上是由所建立的培训数据的质量决定的,”就像人类学生的学习将受到所提供的教材的影响一样本质上,人工智能只是机器模仿人类智能行为的能力。人工智能实际上是一组功能,它使计算机能够完成过去需要人类智能的工作,或者可能需要太长时间才能完成的工作。