等差数列是高一学的,属于人教版是必修五。
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。
注意:以上n均属于正整数
等差数列的基本公式:
等差数列的和=(首项+末项)×项数÷2;
公差=第二项-首项;
项数=(末项-首项)÷公差+1;
等差数列的第n项=首项+(n-1)×公差;
首项=末项-公差×(项数-1)
1、等差数列的定义:
一般地,如果一个数列从第二项起,每一项与它的前一项之差都等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d来表示。
定义可以用公式表达为:a(n+1)-an=d(式中n为正整数,d为常数)。特别注意的是,d是一个与项数n无关的常数
2、等差中项:
三个数 a、A、b依次组成等差数列,A叫做的等差中项,且2A=a+b(等差中项等于前项与后项的和的一半)
小学四年级奥数中就开始学等差数列。