众数为65,中位数为65;平均数为67。
1、众 数:频率分布直方图中最高矩形的底边中点的横坐标 。
2、算术平均数:频率分布直方图每组数值的中间值乘以频数相加。
3、加权平均数:加权平均数就是所有的频率乘以数值后的和相加。
4、中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。
扩展资料:
当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。
频率有如下性质:
(1)非负性:0小于等于fn(A)小于等于1
(2)规范性:fn(Ω)=1 (注:Ω表示样本空间)
(3)可加性
频率不等同于概率,由伯努利大数定律,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A)
中位数=x+0.5-(s1-s2-……-sn)/h 其中x表示中位数所在的那个方格的前边界数,例如这个方格表示在(15~18)那么x表示15,括号里面表示在这个方格前面的所有方格的面积,也就是频率,h表示中位数所在的方格的高。
频率分布直方图 纵轴表示频数/组距,横轴表示各组组距,若求某一组的频率,就用纵轴的频率/组距*横轴的组距,即得该组频率。
小长方形的面积=组距*(频数/组距)=频数