数域定义设F是一个数环,如果 (1) 对任意的a∈F且a≠0; (2) 若a,b∈F而且a≠0,则b/a∈F; 则称F是一个数域.例如有理数集Q、实数集R、复数集C等都是数域.著名的域还有:Klein四元域.
数域是指包含于复数域的域,任何数域都包含有理数域。
数域也常常用来作为代数数域的简称。
数域的定义:设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。
常见数域:复数域C;实数域R;有理数域Q。
数域定义设F是一个数环,如果 (1) 对任意的a∈F且a≠0; (2) 若a,b∈F而且a≠0,则b/a∈F; 则称F是一个数域.例如有理数集Q、实数集R、复数集C等都是数域.著名的域还有:Klein四元域.
数域是指包含于复数域的域,任何数域都包含有理数域。
数域也常常用来作为代数数域的简称。
数域的定义:设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。
常见数域:复数域C;实数域R;有理数域Q。