小数点“.”的由来:在很久以前,人们写小数的时候,就将小数部分降一格写,略小于整数部分。例如写63.35,就写成6335。
16世纪,德国数学家鲁道夫用一条竖线来隔开整数部分和小数部分,例如257.36表示成257|36。
17世纪,英国数学家耐普尔采用一个逗号“,”来作为整数部分和小数部分的分界点,例如 17.2记作是17,2。这样写容易和文字叙述中的逗号相混淆,但是当时还没有发现更好的方法。
在17世纪后期,印度数学家研究分数时,首先使用小圆点“·”来隔开整数部分和小数部分,直到这个时候,小数点才算是真正诞生了。
等于号“=”的由来:为了表示等量关系,用“=”表示“相等”,这是大家最熟悉的一个符号了。
1557年英国数学家列科尔德有创见性地用两条平行且相等的线段“=”表示“相等”,“=”叫做等号。
用“=”替换了单词表示相等是数学上的一个进步。由于受当时历史条件的限制,列科尔德发明的等号,并没有马上为大家所采用。
加号“+”和减号“-”的由来:
“+” 和“-”并不是随着加减运算的产生而立即出现的。如中国至少在商代(约三千年前),已经有加法、减法运算,但同其他几个文明古国如埃及、希腊和印度一样,都没有加法和减法符号。
“+”、“-”出现于中世纪。1489年,德国数学家魏德曼在他的著作中首先使用“+”、“-”表示剩余和不足;1514年荷兰数学家赫克把它用作数学运算符号;后来又经过法国数学家韦达的宣传和提倡,才开始普及,直到1630年,才得到大家的公认。
乘号“×”的由来:
乘法是最早产生的运算之一,且出现于人类最早的文字记载当中。英国数学家奥特雷德于1631年在其著作《数学之钥》中首次以“×”表示两数相乘,即现代的乘号,后日渐流行,沿用至今。
除号“÷”的由来:
现在除号“÷”称为雷恩记号,是瑞士人J.H.雷恩于1659年出版的一本代数书中引用为除号。此外,莱布尼兹于他的一篇论文《组合的艺术》内首以冒号“ :”表示除,另外也有人用“-”(除线)表示除。以上三种表示除的符号一直沿用至今。
大于号“>”和小于号“<”的由来:
大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用。它是一种关系符号,表示的是两个量之间的大小关系。
小括号“()”、中括号“[]”和大括号“{}”的由来:
大约400多年以前,在大数学家魏治德的数学运算中,首次出现了()、[ ]和{ }。 “( )”叫小括号,又叫圆括号,是17世纪荷兰数学家吉拉特开始使用的。“[ ]”叫中括号,又叫方括号;“{ }” 叫大括号,又叫花括号,这两种括号是16世纪法国数学家韦达开始使用的。
圆周率π的由来:数学中它是圆周长与直径的比的比值,是精确计算圆周长、圆面积、球体积等几何形状的关键值。
1600年,英国威廉奥托兰特首先使用π表示圆周率,因为π是希腊 “圆周”的第一个字母,而δ是“直径”的第一个字母,当δ=1时,圆周率为π。1737年数学家欧拉在其著作中使用π,后来被数学家广泛接受,一直没用至今。
大约1500年前,中国古代数学家祖冲之计算出圆周率大约在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值精确到6位小数的人。
百分号“%”的由来:
16世纪的欧洲,工商贸易的迅速发展推动了科学技术的进步,人们对计算的精确度要求越来越高。在计算实践中发现,自然数有一个基本的单位是1,而分数和小数都没有统一的单位。例如 的单位是 ,0.05的单位是0.01.因为它们的单位很不统一,所以在实际应用中仍有许多不足之处。于是,在分数的基础上,数学家把目光投向分母是100的分数身上,称它为百分数。“百分数”用符号“%”表示,这样百分号就产生了。
角号的由来:
在数学中,要研究各种各样的数和形。它不是人们头脑中固有的,是人们从社会实践中得来的。人类的祖先从开始制造工具起,就脱离了动物界,对千奇百怪的“形”有了一定的认识。随着社会的不断进步,人们终于从各种角的形象中,抽象出它的本质概念:由一点出发的两条射线所组成的图形叫做角。“角”用符号“∠”表示,读作“角”。角是几何里最简单的图形之一。用“∠”和几个字母联合起来,就能形象的表示一个角。