1 直线的一般式为Ax+By+C=0,回归直线的一般式为y = a + bx,其中a为截距,b为斜率。
2 根据数据计算出斜率b和截距a,一般使用最小二乘法,即将预测值与实际值的差平方和最小化。
3 将斜率和截距代入回归直线的一般式即可得到回归直线方程。
4 再根据需要,可以进行误差分析、置信度计算等进一步的步骤。
延伸:回归分析是一种广泛应用于统计学、机器学习等领域的方法,可以用于预测、分类、关联等多种任务。
在实际应用中,还需要注意数据的质量、模型的选择、参数的调整等问题。
回归方程 ^y = 1.8166 + 0.1962x
计算过程:
从散点图(题目有给吧)看出x和y呈线性相关,题中给出的一组数据就是相关变量x、y的总体中的一个样本,我们根据这组数据算出回归方程的两个参数,便可以得到样本回归直线,即与散点图上各点最相配合的直线。
下面是运用最小二乘法估计一元线性方程^y = a + bx的参数a和b:
(a为样本回归直线y的截距,它是样本回归直线通过纵轴的点的y坐标;b为样本回归直线的斜率,它表示当x增加一个单位时y的平均增加数量,b又称回归系数)
首先列表求出解题需要的数据
n 1 2 3 4 5 ∑(求和)
房屋面积 x 115 110 80 135 105 545
销售价格 y 24.8 21.6 18.4 29.2 22 116
x^2(x的平方) 13225 12100 6400 18225 11025 60975
y^2(y的平方) 615.04 466.56 338.56 852.64 484 2756.8
xy 2852 2376 1472 3942 2310 12952
套公式计算参数a和b:
Lxy = ∑xy - 1/n*∑x∑y = 308
Lxx = ∑x^2 - 1/n*(∑x)^2 = 1570
Lyy = ∑y^2 - 1/n*(∑y)^2 = 65.6
x~(x的平均数) = ∑x/n = 109
y~ = ∑y/n = 23.2
b = Lxy/Lxx = 0.196178344
a = y~ - bx~ = 1.81656051
回归方程 ^y = a + bx
代入参数得:^y = 1.8166 + 0.1962x