归一化,就是为了限定你的输入向量的最大值跟最小值不超过你的隐层跟输出层函数的限定范围。
比如,你的隐层的传递函数为logsig,那么你的输出就在0~1范围内,如果你的传递函数为tansig,你的隐层的输出在-1~·范围内,用归一化,这也是为了你的隐层传递函数的输出着想。
标准化,只是对数据进行了统一的标准,其大小可能已经超出了隐层传递函数的界定范围,在后续的运行时,容易出错。
归一化,就是为了限定你的输入向量的最大值跟最小值不超过你的隐层跟输出层函数的限定范围。
比如,你的隐层的传递函数为logsig,那么你的输出就在0~1范围内,如果你的传递函数为tansig,你的隐层的输出在-1~·范围内,用归一化,这也是为了你的隐层传递函数的输出着想。
标准化,只是对数据进行了统一的标准,其大小可能已经超出了隐层传递函数的界定范围,在后续的运行时,容易出错。