有关等比数列的所有公式:Sn=[a1*(1-q^n)]/(1-q) 为等比数列,而这里n为未知数,可以写成F(n)=[a1*(1-q^n)]/(1-q) ,当q=1时,为常数列,也就是 n个a1相加为n*a1。
如果一个数列从第2项起,每一项与前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 注:q=1 时,an为常数列。即a^n=a。
1、等比数列的概念
如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

2、等比数列通项公式推导与运用
等比数列通项公式的推导是借助累乘法消去中间项。推导如下:





等比数列全部公式:
(1)等比数列的通项公式是:An=A1×q^(n-1)。
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)。
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。
求和公式推导:
(1)Sn=a1+a2+a3+...+an(公比为q)
(2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
(3)Sn-qSn=(1-q)Sn=a1-a(n+1)
(4)a(n+1)=a1qn
(5)Sn=a1(1-qn)/(1-q)(q≠1)