1、导数和函数、复变函数与积分、概率论、线性代数。
2、复变函数与积分的学习,与高中的复数有一点关系,高中学的是基础定义和部分应用,到大学会把微积分联系在一起深入学习,所以,学好复数部分对以后更好的学习有不少帮助。
3、概率论的学习,不再像高中是学习排和组合,当然学好这部分的概率和期望对以后理解很有帮助,概率论更多的是学习其他概率分布模型。
4、线性代数的学习,是一门工程数学,解方程n元一次组,n维相量、矩阵等等,实际中应用广泛,好好理解下相量空间,这门学科跟以前联系不多,好好学一定会学好的。
在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。
理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
扩展资料
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。
还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。