当前位置:首页>维修大全>综合>

鲁教版两位数乘两位数的口诀(两位数乘两位数的方法口诀)

鲁教版两位数乘两位数的口诀(两位数乘两位数的方法口诀)

更新时间:2024-04-17 02:12:14

鲁教版两位数乘两位数的口诀

口诀就是:加上个位添个零,再加个位两相乘.

例如,心算16×18的过程是这样滴:

乘数16加上另一个乘数的个位数8,即16+8=24,在和24的后面添个0得240;

把240再加上个位数6、8的乘积48,得240+48=288.整个计算过程是:

16+8=24,24×10=240,

6×8=48,

把两次所得结果相加,得240+48=288.

即16×18=288.

这样计算的依据是什么呢?下面我们用整式乘法的知识来揭开其中的秘密.

设11~19两位数中被乘数的个位数为a,乘数的个位数为b,则这样的两个数相乘就是:

(10+a)(10+b)=100+10(a+b)+ab=[(10+a)+b]×10+ab.

结果表明:11~19两位数(10+a)×(10+b),用被乘数(10+a)加上乘数的个位数b,所得的和[(10+a)+b]再乘以10(即在和的后面添个0),最后再加上被乘数的个位数a与乘数的个位数b的积ab.

事实上,从(10+a)(10+b)= 10(a+b)+ab+100我们还可以发现一种新的心算方法:个位相加添个零,再加个位两相乘,最后百位再加1.

例如:心算14×19,"个位相加添个零",个位相加得13,添个零,得130,"再加个位相乘积",个位相乘得36,得130+36=166,"最后百位数1再加上1",得266.即14×19=266.

又如,心算19×19过程如下:

9+9=18→180;

9×9=81,

180+81=261→361.

所以19×19=361.

下面我们再把这个口诀推广到十位数相同的两位数相乘:

设十位数为n,个位数分别为a、b,则

(10n+a)(10n+b)

=100n2+10n(a+b)+ab。

至此我们可以发现一个计算口诀为:十位平方添俩零,个位相加几十乘,最后再把个位乘。

这里的“几十乘”是指十位数是几就乘以几十。比如十位数是8,就乘以80.

例如,心算37×32,口诀心算如下:

3的平方得9,添俩零得900;

7+2=9,9×30=270;

7×2=14;

把三次所得结果相加,得900+270+14=1184.

即37×32=1184.

如果把(10n+a)(10n+b)=100n2+10n(a+b)+ab变形为:

10n[(10n+a)+b]+ab,

则又可以得到一个与十位数为1的两位数相乘类似的口诀如下:

加上个位几十乘,再加个位两相乘.

例如,心算37×32,口诀计算如下:

被乘数37加上乘数的个位数2,得37+2=39,再乘以30,得39×30=1170;

个位数7和2相乘,得7×2=14;

1170+14=1184。

即37×32=1184.

又如,心算64×66过程如下:

64+6=70,70×60=4200;

4×6=24;

把两次所得结果相加,得4200+24=4224.

所以64×66=4224.

以上口诀可以推广到任意两个两位数相乘:

由于(10m+a)(10n+b)=100mn+10(an+bm)+ab,

所以可得两位数乘以两位数的口诀为:

十位相乘添俩零,内外相乘和添零,再加个位两相乘。

这里的"内外相乘"指的是被乘数的十位数与乘数的个位数相乘,乘数的十位数与被乘数的个位数相乘。例如35×76,"内"指的是5和7,"外"指的是3和6。

用竖式表示这两位相乘可以更直观看出口诀的含义。

例如,心算29×83,口诀计算如下:

十位数2乘以十位数8,得2×8=16,添俩零,得1600;

内外相乘求和,得9×8+2×3=78,添个零,得780;

个位相乘,得9×3=27;

把三次所得结果相加,得1600+780+27=2307,

所以29×83=2307.

再如,心算:81×97过程如下:

8×9=72→7200;

1×9+8×7=65→650;

1×7=7;

把三次所得结果相加,得7200+650+7=7857.

更多栏目