当前位置:首页>维修大全>综合>

函数奇偶性的几个意义(函数奇偶性的十大结论)

函数奇偶性的几个意义(函数奇偶性的十大结论)

更新时间:2024-03-11 14:12:49

函数奇偶性的几个意义

(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如,(f(x)≠0)。

奇偶性的几何意义是两种特殊的图象对称。

函数的奇偶性是定义域上的普遍性质,定义式是定义域上的恒等式。

利用奇偶性的运算性质可以简化判断奇偶性的步骤。

(2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。

判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则。

函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。

函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。

(3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。

求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|。

(4)反函数:函数是否是有反函数是函数概念的重要运用之一,在求反函数之前首先要判断函数是否具备反函数,函数f(x)的反函数f-1(x)的性质与f(x)性质紧密相连,如定义域、值域互换,具有相同的单调性等,把反函数f-1(x)的问题化归为函数f(x)的问题是处理反函数问题的重要思想。

设函数f(x)定义域为A,值域为C,则

  f-1[f(x)]=x,x∈

  f[f-1(x)]=x,x∈C

更多栏目