莫尔斯理论,即大范围变分法。确切地说,假设ƒ是n维微分流形M上的实值可微函数,ƒ的临界点p是指梯度向量场gradƒ的零点,即在局部坐标下使得的点。
ƒ的全部临界点的性态与流形M本身的拓扑结构有密切的关系,探索这些关系就是临界点理论的主要任务
Morse定理:在临界点的附近函数可表示为二次型的形状,且函数的性态由它的指标来描述。
莫尔斯理论,即大范围变分法。确切地说,假设ƒ是n维微分流形M上的实值可微函数,ƒ的临界点p是指梯度向量场gradƒ的零点,即在局部坐标下使得的点。
ƒ的全部临界点的性态与流形M本身的拓扑结构有密切的关系,探索这些关系就是临界点理论的主要任务
Morse定理:在临界点的附近函数可表示为二次型的形状,且函数的性态由它的指标来描述。