当前位置:首页>维修大全>综合>

离心率的通俗解释(离心率的定义怎么来的)

离心率的通俗解释(离心率的定义怎么来的)

更新时间:2024-03-02 18:24:57

离心率的通俗解释

椭圆的离心率(偏心率)(eccentricity)。离心率统一定义是动点到焦点的距离和动点到准线的距离之比。也称为偏心率,离心率。离心率统一定义是动点到左(右)焦点的距离和动点到左(右)准线的距离之比。

椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a。

扩展资料:

离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。

圆的离心率=0

椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )

抛物线的离心率:e=1

双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )

在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。

椭圆上任意一点到两焦点的距离等于a±ex。

更多栏目