当前位置:首页>维修大全>综合>

切点弦一般式方程推导过程(抛物线切点弦方程的推导方法)

切点弦一般式方程推导过程(抛物线切点弦方程的推导方法)

更新时间:2024-03-06 00:32:45

切点弦一般式方程推导过程

           过圆x²+y²=r²外一点P(x0,y0)作切线PA,PB, A(x1,y1),B(x2,y2)是切点,则过AB的直线xx0+yy0=r²,称切点弦方程。

证明: x²+y²=r²在点A,B的切线方程是xx1+yy1=r²,xx2+yy2=r²,

∵ 点P在两切线上, ∴ x0x1+y0y1=r²,x0x2+y0y2=r²,此二式表明点A,B的坐标适合直线方程xx0+yy0=r², 而过点A,B的直线是唯一的, ∴ 切点弦方程是xx0+yy0=r²。

说明:① 切点弦方程与圆x²+y²=r²上一点T(x0,y0)的切线方程相同。

② 过圆(x-a)²+(y-b)²=r²外一点P(x0,y0)作切线PA,PB,切点弦方程是(x-a)(x-x0)+(y-b)(y-y0)=r²。

更多栏目