连续是考察函数在一个点的性质。
而一致连续是考察函数在一个区间的性质。
所以一致连续比连续的条件要严格,在区间上一致连续的函数则一定连续,但连续的函数不一定一致连续。
通俗地讲,函数在区间上是一致连续的,说明这个函数在这个区间上,任意接近的两个自变量的函数也是任意接近的。从图形上看,就是不会产生陡然上升或下降的情况。(当然这样描述起来,至于他的“陡然”程度是模糊的
某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x'和x",当满足|x'-x"|<δ时,|f(x')-f(x")|<ε恒成立,则该函数在区间I上一致连续。对于在闭区间上的连续函数,其在该区间上必一致连续。一致连续的函数必定是连续函数。
从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。[