当前位置:首页>维修大全>综合>

三年级数学各种应用题公式(三年级上册数学应用题100道打印版)

三年级数学各种应用题公式(三年级上册数学应用题100道打印版)

更新时间:2024-03-17 09:55:20

三年级数学各种应用题公式

1.归一问题

【数量关系】

总量÷份数=1份数量

1份数量×所占份数=所求几份的数量

另一总量÷(总量÷份数)=所求份数

例题:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)

(2)买16支铅笔需要多少钱?0.12×16=1.92(元)

列成综合算式0.6÷5×16=0.12×16=1.92(元)

答:需要1.92元。

2.归总问题

【数量关系】

1份数量×份数=总量

总量÷1份数量=份数

总量÷另一份数=另一每份数量

例题:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

解:(1)这批布总共有多少米?3.2×791=2531.2(米)

(2)现在可以做多少套?2531.2÷2.8=904(套)

列成综合算式3.2×791÷2.8=904(套)

答:现在可以做904套。

3.和差问题

【数量关系】

大数=(和+差)÷2

小数=(和-差)÷2

例题:甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

解:甲班人数=(98+6)÷2=52(人)

乙班人数=(98-6)÷2=46(人)

答:甲班有52人,乙班有46人。

4.和倍问题

【数量关系】

总和÷(几倍+1)=较小的数

总和-较小的数=较大的数

较小的数×几倍=较大的数

例题:果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

解:(1)杏树有多少棵?248÷(3+1)=62(棵)

(2)桃树有多少棵?62×3=186(棵)

答:杏树有62棵,桃树有186棵。

5.差倍问题

【数量关系】

两个数的差÷(几倍-1)=较小的数

较小的数×几倍=较大的数

例题:爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

解:(1)儿子年龄=27÷(4-1)=9(岁)

(2)爸爸年龄=9×4=36(岁)

答:父子二人今年的年龄分别是36岁和9岁。

6.倍比问题

【数量关系】

总量÷一个数量=倍数

另一个数量×倍数=另一总量

例题:100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)

(2)可以榨油多少千克?40×37=1480(千克)

列成综合算式40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

7.相遇问题

【数量关系】

相遇时间=总路程÷(甲速+乙速)

总路程=(甲速+乙速)×相遇时间

例题:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

解:392÷(28+21)=8(小时)

答:经过8小时两船相遇。

8.追及问题

【数量关系】

追及时间=追及路程÷(快速-慢速)

追及路程=(快速-慢速)×追及时间

例题:好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

解:(1)劣马先走12天能走多少千米?75×12=900(千米)

(2)好马几天追上劣马?900÷(120-75)=20(天)

列成综合算式75×12÷(120-75)=900÷45=20(天)

答:好马20天能追上劣马。

9.百分数问题

【数量关系】

掌握“百分数”、“标准量”“比较量”三者之间的数量关系:

百分数=比较量÷标准量

标准量=比较量÷百分数

例题:仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?

解:(1)用去的占720÷(720+6480)=10%

(2)剩下的占6480÷(720+6480)=90%

答:用去了10%,剩下90%。

10.“牛吃草”问题

【数量关系】

草总量=原有草量+草每天生长量×天数

例题:一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?

解:草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:

(1)求草每天的生长量

因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以

1×10×20=原有草量+20天内生长量

同理1×15×10=原有草量+10天内生长量

由此可知(20-10)天内草的生长量为

1×10×20-1×15×10=50

因此,草每天的生长量为50÷(20-10)=5

(2)求原有草量

原有草量=10天内总草量-10内生长量=1×15×10-5×10=100

(3)求5天内草总量

5天内草总量=原有草量+5天内生长量=100+5×5=125

(4)求多少头牛5天吃完草

因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

因此5天吃完草需要牛的头数125÷5=25(头)

答:需要5头牛5天可以把草吃完。

11.鸡兔同笼问题

【数量关系】

第一鸡兔同笼问题:

假设全都是鸡,则有

兔数=(实际脚数-2×鸡兔总数)÷(4-2)

假设全都是兔,则有

鸡数=(4×鸡兔总数-实际脚数)÷(4-2)

第二鸡兔同笼问题:

假设全都是鸡,则有

兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)

假设全都是兔,则有

鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)

例题:长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?

解:假设35只全为兔,则

鸡数=(4×35-94)÷(4-2)=23(只)

兔数=35-23=12(只)

也可以先假设35只全为鸡,则

兔数=(94-2×35)÷(4-2)=12(只)

鸡数=35-12=23(只)

答:有鸡23只,有兔12只。

12.方阵问题

【数量关系】

(1)方阵每边人数与四周人数的关系:

四周人数=(每边人数-1)×4

每边人数=四周人数÷4+1

(2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=(外边人数)?-(内边人数)?

内边人数=外边人数-层数×2

(3)若将空心方阵分成四个相等的矩形计算,则:

总人数=(每边人数-层数)×层数×4

例题:在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

解:22×22=484(人)

答:参加体操表演的同学一共有484人。

更多栏目