!表示阶乘符号。
阶乘符号:
一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,并且有0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。阶乘亦可定义于整个实数(负整数除外),其与伽玛函数的关系为:n!可质因子分解为,如6!=24×32×51。
1751年,欧拉以大写字母M表示m阶乘,即 M=1×2×3×…×m
1799年,鲁非尼在他出版的方程论著述中,则以小写字母π表示m阶乘,而在1813年,高斯则以Π(n)来表示n阶乘。而用来表示n阶乘的方法起源于英国,但仍未能确定始创人是谁。
直至1827年,由于雅莱特的建议而得到流行,现在有时也会 以这个符号作为阶乘符号。
而最先提出阶乘符号n!的人是克拉姆 (1808),后来经过欧姆等人的提倡而流行,直至现在仍然通用。当n较大时,直接计算n!变得不可能,这时可通过斯特灵(Stirling)公式计算近似算或取得大小范围