当前位置:首页>维修大全>综合>

余弦定理必背口诀(余弦定理记忆口诀)

余弦定理必背口诀(余弦定理记忆口诀)

更新时间:2024-01-05 23:47:38

余弦定理必背口诀

(1)两角和公式

    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    (2)倍角公式

    tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

更多栏目