数学模型是利用系统化的符号和数学表达式对问题的一种抽象描述。数学建模可看作是把问题定义转换为数学模型的过程。
和问题定义相对应,数学模型包括几个主要组成部分:决策变量、环境变量、目标函数和约束条件。决策变量表示决策者可以控制的因素,即可控输入,是需要通过模型求解来确定的模型中的未知变量。环境变量表示决策者不可控的外界因素,即非可控输入,需要在收集数据阶段确定其具体数值,并在模型中以常量表示。目标函数是指描述问题目标的数学方程,而约束条件则是指描述问题中制约和限制因素的数学表达式(等式或不等式)。(这个主要是规划的一种定义)
数学建模是一项富有创造性的工作。
关于找队友:在信息不对称的情况下,优先考虑三人的专业搭配,比如或信电的小伙伴负责编程和理工科题建模,经济金融统计负责论文和统计建模,数学计算专业的全方位建模以及帮忙论文,个人感觉这样子比较好。由于建模粗略地可以分为建模,编程,论文,三块,整体上是一人负责一块的,但是绝对不能走极端,每个人就单单的负责一块,这样子的组合缺乏沟通和互动。应该要在培训中磨合,结合每个人的个人特点。主要负责哪几块,辅助哪几块。