内角:在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC
外角:在三角形abc中,当角A的外角平分线交BC的延长线于D时,BD/CD=AB/AC
角平分线定理 :
1. 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
2. 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
③.三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
定理1:角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例, 如:在△ABC中,AD平分∠BAC,则BD:DC=AB:AC 证明: 任意△ABC,AD为∠BAC的角平分线 由正弦定理可知 BD/sin∠BAD=AD/sinB DC/sin∠CAD=AD/sinC 由上式可以得 BD/DC=sinC/sinB 又因为AB/sinC=AC/sinB 所以sinC/sinB=AB/AC 所以BD/DC=AB/AC外角和内角差不多