设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),
过点F的直线方程为x=my+(p/2),
代入y²=2px,得y²=2pmy-p²=0,∴y1y2= -p²,
x1x2=(y1²/2p) (y2²/2p)=p²/4.
由抛物线的定义可知,AF=x1+(p/2),BF=x2+(p/2),
∴1/AF+1/BF
=1/[ x1+(p/2)]+1/[ x2+(p/2)]
=(x1+x2+p)/[x1x2+p(x1+x2)/2+(p²/4)] (通分化简)
将x1x2= p²/4,x1+x2=AB-p,代入上式,得
1/AF+1/BF=AB/[(p²/4)+p(AB-p)/2+(p²/4)]=2/p,
即1/AF+1/BF=2/p.