当前位置:首页>维修大全>综合>

时间序列预测方法有哪些分类 分别适合使用的情况是

时间序列预测方法有哪些分类 分别适合使用的情况是

更新时间:2023-06-28 13:55:49

时间序列预测方法有哪些分类 分别适合使用的情况是

时间序列预测方法根据对资料分析方法的不同,可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。

1、简单序时平均数法只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。

2、加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。

3、简单移动平均法适用于近期期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。

4、加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。

5、指数平滑法即根用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。

6、季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。

7、市场寿命周期预测法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。扩展资料:时间序列预测法的特征1、时间序列分析法是根据过去的变化趋势预测未来的发展,前提是假定事物的过去延续到未来。运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。不会发生突然的跳跃变化,是以相对小的步伐前进;过去和当前的现象,可能表明现在和将来活动的发展变化趋向。2.时间序列数据变动存在着规律性与不规律性时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型:趋势性、周期性、随机性、综合性。

更多栏目