三大余数定理: 余数的加法定理,余数的乘法定理和同余定理。
1.余数的加法定理
a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
2.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余
3.同余定理
若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a?b ( mod m ),左边的式子叫做同余式。
同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:
若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除。