当前位置:首页>维修大全>综合>

正弦余弦正切的定理及公式是什么

正弦余弦正切的定理及公式是什么

更新时间:2023-06-29 01:44:04

正弦余弦正切的定理及公式是什么

  

1,三角函数正弦定理公式

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。

2,三角函数余弦定理公式

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

对于边长为a、b、c而相应角为A、B、C的三角形则有:

①a²=b²+c²-2bc·cosA;

②b²=a²+c²-2ac·cosB;

③c²=a²+b²-2ab·cosC。

也可表示为:

①cosC=(a²+b²-c²)/2ab;

②cosB=(a²+c²-b²)/2ac;

③cosA=(c²+b²-a²)/2bc。

3,三角函数正切定理公式:

在三角形中,任意两条边的和除以首条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以首条边对角减第二条边对角的差的一半的正切所得的商。

对于边长为a,b和c而相应角为A,B和C的三角形,有:

①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];

②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];

③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。

正弦是三角学中的一个基本定理,任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径,余弦描述三角形中三边长度与一个角的余弦值关系的数学定理,正切任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。

  在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。

正弦:a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。

  余弦:a^2=b^2+c^2-2bc*cosA,(a^2表示a的平方),b^2=c^2+a^2-2ac*cosB,(还有一个类似),

正切:tan(A-B)/2=(a-b)/(a+b)*ctanC/2。

更多栏目