概率中的无偏估计量的判定直接根据数学期望即可,因为数学期望即无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。
一个自然而基本的衡量标准是要求估计量无系统偏差。
也就是说,尽管在一次抽样中得到的估计值不一定恰好等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同。
希望估计量的均值(数学期望)应等于未知参数的真值,这就是所谓无偏性(Unbiasedness)的要求。数学期望等于被估计的量的统计估计量称为无偏估计量。
概率中的无偏估计量的判定直接根据数学期望即可,因为数学期望即无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。
一个自然而基本的衡量标准是要求估计量无系统偏差。
也就是说,尽管在一次抽样中得到的估计值不一定恰好等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同。
希望估计量的均值(数学期望)应等于未知参数的真值,这就是所谓无偏性(Unbiasedness)的要求。数学期望等于被估计的量的统计估计量称为无偏估计量。