当前位置:首页>维修大全>综合>

质数一共有多少个

质数一共有多少个

更新时间:2023-08-28 08:38:37

质数一共有多少个

质数(prime number)又称素数,有无限个。一个大于1的自然数,如果除了1和它自身外,不能被其他自然数整除(除0以外)的数称之为素数(质数);否则称为合数。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。

在自然数域内,质数是不可再分的数,是组成一切自然数的基本元素。 比如,10 是由2和5的积,质数有无穷多个,因此算术世界的元素也就有无穷多个。算术世界内的一切对象、定理和方法,都是由其基本元素质数组成的。

在自然数域内,质数是不可再分的数,是组成一切自然数的基本元素。 比如,10是由两个 2 和一个 3 组成的,正如水分子是由两个 H 原子和一个 O 原子组成的一样。只是和化学世界不同,质数有无穷多个,因此算术世界的元素也就有无穷多个。算术世界内的一切对象、定理和方法,都是由其基本元素质数组成的。

只有1和它本身两个正因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)

100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,在100内共有25个质数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。

更多栏目