当前位置:首页>维修大全>综合>

增根的定义及性质

增根的定义及性质

更新时间:2023-06-28 01:32:50

增根的定义及性质

增根指方程求解后得到的不满足题设条件的根。一元二次方程与分式方程和其它产生多解的方程在一定题设条件下都可能有增根。在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。 

1.在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。

2.对于分母的值为零时,这个分数无意义,所以不允许分母为0,即本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。

3.解分式方程时出现增根或失根,往往是由于违反了方程的同解原理或对方程变形时粗心大意造成的。

4.如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0的两边都乘x,变形成x(x-2)=0,方程两边所乘的最简公分母,看其是否为0,是0即为增根。

5.增根的产生,归根结底都是因为思维的不全面产生的。解题时要保证步步变形的等价性,这种等价性要通过等式和不等式去约束出来,特别是不等式,容易被忽略。如果不得已必须用不等价变形来解题,那么最后千万别忘记通过检验来去掉增根,这种检验也要注意全面性。

更多栏目