概念
散度定理是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。更加精确地说,散度定理说明向量场穿过曲面的通量,等于散度在曲面围起来的体积上的积分。直观地,所有源点的和减去所有汇点的和,就是流出这区域的净流量。
高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。
在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。
这个定理是更一般的斯托克斯公式的特殊情形。
概念
散度定理是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。更加精确地说,散度定理说明向量场穿过曲面的通量,等于散度在曲面围起来的体积上的积分。直观地,所有源点的和减去所有汇点的和,就是流出这区域的净流量。
高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。
在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。
这个定理是更一般的斯托克斯公式的特殊情形。