两个向量相乘有两种形式:叉积和点积。
(1)向量叉积=向量的模乘以向量夹角的正弦值;
向量叉积的方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)
(2)向量点积=向量的模乘以向量夹角的余弦值。
向量叉积a×b=|a||b|sin<a,b>,向量点积a·b=|a||b|cos<a,b>。
两个向量相乘有两种形式:叉积和点积。
(1)向量叉积=向量的模乘以向量夹角的正弦值;
向量叉积的方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)
(2)向量点积=向量的模乘以向量夹角的余弦值。
向量叉积a×b=|a||b|sin<a,b>,向量点积a·b=|a||b|cos<a,b>。