当前位置:首页>维修大全>综合>

投针实验求圆周率值的完整证明

投针实验求圆周率值的完整证明

更新时间:2023-09-18 13:35:36

投针实验求圆周率值的完整证明

“投针实验”求圆周率的方法。1777年,法国数学家蒲丰取一根针,量出它的长度,然后在纸上画上一组间距相等的平行线,这根针的长度是这些平行线的距离是的一半。把这根针随机地往画满了平行线的纸面上投去。小针有的与直线相交,有的落在两条平行直线之间,不与直线相交。这次实验共投针2212次,与直线相交的有704次,2212÷704≈3.142。得数竟然是π的近似值。这就是著名的蒲丰投针问题。

后来他把这个试验写进了他的论文《或然性算术尝试》中。

蒲丰证明了针与任意平行线相交的概率为 p = 2l/πd 。这个公式中l为小针的长,d为平行线的间距。由这个公式,可以用概率方法得到圆周率的近似值。

当实验中投的次数相当多时,就可以得到 π 的更精确的值。 蒲丰实验的重要性并非仅仅是为了求得比其它方法更精确的 π 值。而在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

更多栏目