1、 均值滤波(对高斯噪声具有较好的处理效果)
均值滤波在去噪声的同时会有如下缺点:边界模糊效应明显、细节丢失比较严重;无法去掉噪声,只能微弱的减弱它。
高斯噪声:高斯噪声是指它的概率密度函数服从高斯分布的一类噪声
高斯分布(正态分布):正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
2、 中值滤波
中值滤波在边界的保存方面优于均值滤波,是经常使用的一种滤波器,但是在模板逐渐变大时,依然会存在一定的边界模糊。中值滤波对处理椒盐噪声非常有效,或者称为脉冲噪声。从中值滤波扩展出来最大值滤波器和最小值滤波器。
3、 高斯滤波
高斯滤波器是利用高斯核与输入图像的每个点进行卷积。提到高斯,就想到‘草帽’,更能记住它。高斯滤波器是一种平滑线性滤波器,使用高斯滤波器对图像进行滤波,其效果是降低图像灰度的“尖锐”变化,也就是使图像“模糊”了。高斯滤波对于抑制服从正态分布的噪声效果非常好,其代价是使图像变得“模糊”。相对于均值滤波边缘丢失的情况有缓解,但还是无法避免。