当前位置:首页>维修大全>综合>

关于对数函数的所有公式

关于对数函数的所有公式

更新时间:2023-10-01 13:30:41

关于对数函数的所有公式

当a>0且a≠1时,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(5) a^(log(b)n)=n^(log(b)a) 证明:

设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

(6)对数恒等式:a^log(a)N=N;

log(a)a^b=b

(7)由幂的对数的运算性质可得(推导公式)

1.log(a)M^(1/n)=(1/n)log(a)M ,log(a)M^(-1/n)=(-1/n)log(a)M

2.log(a)M^(m/n)=(m/n)log(a)M ,log(a)M^(-m/n)=(-m/n)log(a)M

3.log(a^n)M^n=log(a)M ,log(a^n)M^m=(m/n)log(a)M

4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,

log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(m/n)log(a)M

5.log(a)b×log(b)c×log(c)a=1

对数与指数之间的关系

当a>0且a≠1时,a^x=N x=㏒(a)N

更多栏目