联合概率密度函数的求法是:如果两随机变量相互独立,则联合密度函数等于边缘密度函数的乘积,即f(x,y)=f(x)f(y);如果两随机变量是不独立的,那是无法求的。
联合密度函数是指联合分布函数,定义:随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。
联合概率密度函数的求法是:如果两随机变量相互独立,则联合密度函数等于边缘密度函数的乘积,即f(x,y)=f(x)f(y);如果两随机变量是不独立的,那是无法求的。
联合密度函数是指联合分布函数,定义:随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。