1.监督式学习网络,从问题中取得训练样本(包括输入和输出变量值),并从中学习输入与输出变量两者之间的关系规则,可以在新样本中输入变量值,进而推知其输出变量值。主要有模型有感知机网络、倒传递网络,概率神经网强、学习向量量化网络及反传递网络。
2.非监督学习网络,从问题中取得训练样本(仅包括输入变量值),并从中学习输入变量的分类规则,可以在新样本中输入变量值,从而获得分类信息。主要模型有自组织映像图网络、及自适应共振网络。
3.联想式学习网络,从问题中取得训练样本(仅包括状态变量值),并从中学习内在记忆规则,可以应用于新的安全(不完整的状态变量值),从而推知其完整的状态变量值。包括霍普菲尔网络及双向联想记忆网络。
4.最适化应用网络,针对问题设计变量值,使其在满足设计限制下,达到设计目标优化的效果。包括霍普菲尔——坦克网强及退火神经网络。