共轭根式,是指两个形如a+√b与a-√b的式子(其中a,b都是有理数)
两个根式的积与和都为有理式,这两个根式就互为共轭因式。所以,共轭因式必定是有理化因式,但有理化因式就不一定是共轭因式,共轭因式是有理化因式的特例,有理化因式则是共轭因式的一般形式。 当A、B、C、D都是有理根式,而√B、√C中至少有一个是无理根式时,称A√B+C√D和A√B-C√D互为“共轭根式”。这两式的积为有理式。
共轭根式,是指两个形如a+√b与a-√b的式子(其中a,b都是有理数)
两个根式的积与和都为有理式,这两个根式就互为共轭因式。所以,共轭因式必定是有理化因式,但有理化因式就不一定是共轭因式,共轭因式是有理化因式的特例,有理化因式则是共轭因式的一般形式。 当A、B、C、D都是有理根式,而√B、√C中至少有一个是无理根式时,称A√B+C√D和A√B-C√D互为“共轭根式”。这两式的积为有理式。