数的零次方等于1或0。任何除0以外的数的0次方都是1,0的0次方没有意义。
当我们只考虑正整数指数幂时,有一条运算法则:同底幂的商,底数不变,指数相减。即a^m/a^n=a^(m-n),其中m,n都是正整数,且m>n。但是,经常会遇到两个底数与指数分别相同的幂的除法运算,就是说在上面的那个式子中出现了m=n的情况。于是考虑等号左边显然应当是1;右边如果仍然是“底数不变,指数相减”,就出现了零指数幂。
数的零次方等于1或0。任何除0以外的数的0次方都是1,0的0次方没有意义。
当我们只考虑正整数指数幂时,有一条运算法则:同底幂的商,底数不变,指数相减。即a^m/a^n=a^(m-n),其中m,n都是正整数,且m>n。但是,经常会遇到两个底数与指数分别相同的幂的除法运算,就是说在上面的那个式子中出现了m=n的情况。于是考虑等号左边显然应当是1;右边如果仍然是“底数不变,指数相减”,就出现了零指数幂。