函数周期的计算公式有:
(1)f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
(2)sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π
(3)cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。
(4)tanx和 cotx 的函数周期公式T=π,tanx和 cotx 分别是正切和余切
(5)secx 和cscx 的函数周期公式T=2π,secx 和cscx 是正割和余割。
扩展资料: 函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数的判定方法分为以下几步:
(1)判断f(x)的定义域是否有界;
(2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。
(3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。