具体回答如下:
e的lnx次方等于x。
a^loga(x)=x(公式),所以e^loge(x)=x,e^ln(x)=x,所以1+e^ln(x)=1+x。
证明设a^n=x;则loga(x)=n;所以a^loga(x)=a^n;所以a^loga(x)=x。
运算性质:
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1 真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)