排队理论
在人们的日常生活中常常会碰到拥挤和排队现象。去医院看病、在邮局营业窗口等候服务等,这是有形排队。
除了有形排队之外,还有无形的排队,比如,由于上网人数多,网速大大减慢,这也是因为在“排队”。
增加资源,如增加服务窗口,多设几条跑道,网站设备扩容等,可以减少顾客排队现象。但当顾客比较少时,必然会造成资源闲置。
由此可见,增加服务机构,当然可以减少排队现象,但却增加了服务成本;反之,减少服务机构,固然提高了服务机构的利用率,降低了成本,但却增加了顾客的排队等待时间。这是相互矛盾的。
我们把顾客和服务方构成的系统称为排队系统。电信网络中的信息流和信道,上网人员和网站设施等,都是顾客和服务员的系统。由于顾客到达和服务时间都是不确定的,绝大多数排队系统工作于随机状态。因此,研究排队系统的复杂性也就在于它的随机性。排队论利用概率论和随机过程理论,研究排队系统内的服务机构和顾客需求之间的关系,以便在所需的服务质量标准得到充分满足的条件下,服务机构的费用最为经济。这就是排队论研究的目的。
排队论就是试图通过详细的数学分析来回答这些问题:“顾客必须等待多久?”,“队列中有多少顾客?”,“需要多少服务窗口才能消除排队现象?”等。排队论的应用相当广泛,特别是在通信的应用中,最初排队论主要应用在话务理论上,随着通信网的发展,在分析网络的性能,如网络的时延、吞吐量、利用率等都要用到排队理论。