(tanx)^2的原函数 = tanx - x + C。
∫ (tanx)^2 dx
=∫ [(secx)^2-1] dx
= tanx - x + C
原函数存在定理:
原函数的定理是函数f(x)在某区间上连续的话,那么f(x)在这个区间里必会存在原函数。这是属于充分不必要条件,还被叫做是原函数存在定理,要是函数有原函数的话,那它的原函数为无穷多个。
举个例子,已知作直线运动的物体,在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。
(tanx)^2的原函数 = tanx - x + C。
∫ (tanx)^2 dx
=∫ [(secx)^2-1] dx
= tanx - x + C
原函数存在定理:
原函数的定理是函数f(x)在某区间上连续的话,那么f(x)在这个区间里必会存在原函数。这是属于充分不必要条件,还被叫做是原函数存在定理,要是函数有原函数的话,那它的原函数为无穷多个。
举个例子,已知作直线运动的物体,在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。