当前位置:首页>维修大全>综合>

菱形的性质和判定

菱形的性质和判定

更新时间:2023-05-22 09:23:54

菱形的性质和判定

定义:一组邻边相等的平行四边形叫做菱形。

性质:对角线互相垂直且平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角,菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。 菱形具备平行四边形的一切性质。

判定:一组邻边相等的平行四边形是菱形。四边相等的四边形是菱形。关于两条对角线都成轴对称的四边形是菱形。对角线互相垂直且平分的四边形是菱形。 依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形),对角线相等的四边形的中点四边形定为菱形。 菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形面积1。 对角线乘积的一半(只要是对角线互相垂直的四边形都可用);2。底乘高。特征顺次连接菱形各边中点为矩形正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形。

更多栏目