1.高考数学解题技巧,高考数学36个解题技巧
1、三角变换与三角函数的性质问题 要学会降幂扩角,化成f(x=Asin(ωx+φ+h的形式,利用y=sin x,y=cos x的性质确定求解。
2、解三角形问题 要学会化简变形,一般都是采用余弦定理转化为边的关系,结合基本不等式的知识确定角的取值范围。
3、数列的通项、求和问题 要学会先求某一项,或者找到数列的关系式,据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式,最后求数列和通式。错位相减法是非常那个重要也很容易忘记的方法,一定要多加练习把步骤练的滚瓜烂熟。
4、圆锥曲线中的范围问题 要从题设条件中提取不等关系式。然后寻找变量之间的关系,最后求解,找参数的范围。方程思想是最关键的。圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。解析几何中的探索性问题 一般要先假设结论成立,然后进行推理求解,注意寻找隐含条件。
5、利用空间向量求角问题 理科生要学会建立坐标系,并用坐标来表示向量,用几何法是最好的。注意向量角与线线角、线面角、面面角都不相同,熟练掌握 它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角 三角形解题。
6、离散型随机变量的均值与方差 学会标记事件,防止忘记而漏掉数据,对事件分解计算概率,最重要的就是细心,把计算准确率提高。
7、函数的单调性、极值、最值问题 最重要的就是先学会求导,时刻注意定义域,求切线方程就计算出斜率,利用y=kx b求出方程。谈论函数单调性就用f(x=0得出解,利用画图得出结论。求极值的话最好就画个表格,将f(x定义域分成若干个小开区间。
2.高考数学答题技巧及常用高中数学解题方法,高考数学17个必考题型解题技巧
1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就可以了。
2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!
3、三角函数第二题,如求a(cosB+cosC/(b+ccoA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!
4、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
5、立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!
6、选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的。
7、选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案。
8、线性规划题目直接求交点带入比较大小即可。
9、遇到选项A.1/2,B.1,C.3/2,D.5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2。
3.高中数学解题技巧,高一数学一对一免费课程36节
1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
4.高中数学函数解题技巧,高中函数解题技巧咋学好高中数学
1、建立基础题型和基本问题解法库。知识结构和内容都理清记牢了,我们要进行实战了。和知识点一样,每个模块分出几种基本题型,和几个特殊问题的专题。
2、对一种题型,一定要看会例题或者听懂老师讲解之后,再按老师的解法做同类型的问题。不要搞创新,或者守着自己偏颇的解题方法不放弃。我不反对题海战术,但是你要把海选准,哪种题型不会再往相应的题海里钻,已经很熟练的题型就少练一些。也就是所谓的针对性,重点要突出。并且在做的过程中要不断总结反思,否则你就算游进太平洋也不会有提高。
对于一种题型没掌握,就反复练,一道不会五道,五道不会十道。不要怀疑自己智商不在线,只要运用老师给的解题方法,多次练习一定会精通。我再强调一下,一定要把固定题型的解法也固定,不要每次都换,那样做再多也没用
5.中考数学函数解题技巧,中考数学函数必考题型及解题方法
1、直接法:有些选择题是由计算题、应用题、证明题、判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法。
2、函数型综合题:通常是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
3、几何型综合题:这通常是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式 (即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,探索研究的一般类型有:①在什么条件下三角形是等腰三角形、直角三角形;②四边形是菱形、梯形等;③探索两个三角形满足什么条件相似;④探究线段之间的位置关系等;⑤探索面积之间满足一定关系求x的值等;⑥直线(圆)与圆的相切时求自变量的值等。